
-
-
-

Communication between clients and relays
Relays expose a websocket endpoint to which clients can connect. Clients SHOULD open a single websocket connection to
each relay and use it for all their subscriptions. Relays MAY limit number of connections from speci�c IP/client/etc.

From client to relay: sending events and creating subscriptions
Clients can send 3 types of messages, which must be JSON arrays, according to the following patterns:

<subscription_id> is an arbitrary, non-empty string of max length 64 chars. It represents a subscription per connection.
Relays MUST manage <subscription_id>s independently for each WebSocket connection. <subscription_id>s are not
guaranteed to be globally unique.
<filtersX> is a JSON object that determines what events will be sent in that subscription, it can have the following
attributes:
{
 "ids": <a list of event ids>,
 "authors": <a list of lowercase pubkeys, the pubkey of an event must be one of these>,
 "kinds": <a list of a kind numbers>,
 "#<single-letter (a-zA-Z)>": <a list of tag values, for #e — a list of event ids, for #p — a list of pubkeys, etc.>,
 "since": <an integer unix timestamp in seconds. Events must have a created_at >= to this to pass>,
 "until": <an integer unix timestamp in seconds. Events must have a created_at <= to this to pass>,
 "limit": <maximum number of events relays SHOULD return in the initial query>
}

Upon receiving a REQ message, the relay SHOULD return events that match the �lter. Any new events it receives SHOULD
be sent to that same websocket until the connection is closed, a CLOSE event is received with the same <subscription_id>,
or a new REQ is sent using the same <subscription_id> (in which case a new subscription is created, replacing the old one).
Filter attributes containing lists (ids, authors, kinds and tag �lters like #e) are JSON arrays with one or more values. At
least one of the arrays' values must match the relevant �eld in an event for the condition to be considered a match. For
scalar event attributes such as authors and kind, the attribute from the event must be contained in the �lter list. In the
case of tag attributes such as #e, for which an event may have multiple values, the event and �lter condition values must
have at least one item in common.
The ids, authors, #e and #p �lter lists MUST contain exact 64-character lowercase hex values.
The since and until properties can be used to specify the time range of events returned in the subscription. If a �lter
includes the since property, events with created_at greater than or equal to since are considered to match the �lter. The
until property is similar except that created_at must be less than or equal to until. In short, an event matches a �lter if
since <= created_at <= until holds.
All conditions of a �lter that are speci�ed must match for an event for it to pass the �lter, i.e., multiple conditions are
interpreted as && conditions.
A REQ message may contain multiple �lters. In this case, events that match any of the �lters are to be returned, i.e.,
multiple �lters are to be interpreted as || conditions.

connecting
state

closed
state

CL
IE

NT

SE
RV

ER
 (R

EL
AY

)

DATA

HTTP upgrade request

HTTP 101 switching protocols

close control frame

close control frame

TCP connection terminated

lifecycle of a websocket connection

lifecycle of a nostr subscription
in the open state

for example requesting events:

connecting
state

open
state

REQ

CLOSE

EVENT

EVENT

EVENT

EOSE

CLOSED

["EVENT", <event JSON as defined above>], used to publish events.
["REQ", <subscription_id>, <filters1>, <filters2>, ...], used to request events and subscribe to new updates.
["CLOSE", <subscription_id>], used to stop previous subscriptions.

